Telegram Group & Telegram Channel
Объясните, как работает градиентный бустинг на примере задачи регрессии?

Градиентный бустинг — это мощный ансамблевый метод, который комбинирует предсказания нескольких моделей, обучая их последовательно. Часто в качестве базовых моделей выступают деревья решений. Суть метода в том, что каждая новая модель пытается исправить ошибки предыдущих, приближаясь к идеальному результату шаг за шагом.

▪️Сначала строится базовая модель, дающая простое предсказание целевой переменной. На этом этапе, конечно, модель далека от идеала. Мы измеряем, насколько предсказания модели отличаются от настоящих значений, используя функцию потерь.

▪️Если модель предсказала на 5 больше, чем реальное значение, идеальная поправка для неё была бы -5. Новая модель обучается предсказывать именно этот антиградиент (то есть разницу между предсказанным и истинным значением) для текущей функции потерь. Затем к предсказаниям базовой модели добавляется результат новой модели, корректируя их в нужную сторону.

▪️На каждом следующем шаге очередная модель будет пытаться предсказать антиградиент функции потерь, чтобы улучшить общее предсказание. Это добавление моделей продолжается до тех пор, пока не достигается нужное качество.

▪️В результате предсказание целевой переменной представляет собой взвешенную сумму всех построенных моделей.

#машинное_обучение



tg-me.com/ds_interview_lib/666
Create:
Last Update:

Объясните, как работает градиентный бустинг на примере задачи регрессии?

Градиентный бустинг — это мощный ансамблевый метод, который комбинирует предсказания нескольких моделей, обучая их последовательно. Часто в качестве базовых моделей выступают деревья решений. Суть метода в том, что каждая новая модель пытается исправить ошибки предыдущих, приближаясь к идеальному результату шаг за шагом.

▪️Сначала строится базовая модель, дающая простое предсказание целевой переменной. На этом этапе, конечно, модель далека от идеала. Мы измеряем, насколько предсказания модели отличаются от настоящих значений, используя функцию потерь.

▪️Если модель предсказала на 5 больше, чем реальное значение, идеальная поправка для неё была бы -5. Новая модель обучается предсказывать именно этот антиградиент (то есть разницу между предсказанным и истинным значением) для текущей функции потерь. Затем к предсказаниям базовой модели добавляется результат новой модели, корректируя их в нужную сторону.

▪️На каждом следующем шаге очередная модель будет пытаться предсказать антиградиент функции потерь, чтобы улучшить общее предсказание. Это добавление моделей продолжается до тех пор, пока не достигается нужное качество.

▪️В результате предсказание целевой переменной представляет собой взвешенную сумму всех построенных моделей.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/666

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA